REVERSE VOLTAGE:

FORWARD CURRENT:

50 to 1000 VOLTS
50.0 AMPERE

FEATURES

- Electrically Isolated Metal Case for

Maximum Heat Dissipation
Surge Overload Ratings to 500 Amperes
. Low power loss,high efficiency
Low reverse leakage current
Case to terminal isolation voltage 2500 V
UL Recognized File \# E-216968

MECHANICAL DATA

Case: Metal or molded plastic with heatsink integrally mounted in the bridge encapsulation Suffix letter "P" added to indicate plastic
Terminals: Either plated 0.25 " $(6.35 \mathrm{~mm})$ Fasten lugs or plated copper leads 0.040 " (1.02 mm) diameter.
Suffix letter "W" added to indicate leads

Mounting position: Any
Weight: 1.0ounce, 30.0gram

Maximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified.
Single phase, half wave, $60 \mathrm{H}_{\mathrm{Z}}$, resistive or inductive load.
For capacitive load, derate current by 20%.

	Symbols	KBPC50005	KBPC5001	KBPC5002	KBPC5004	KBPC5006	KBPC5008	KBPC5010	Units
Maximum Recurrent Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	$\mathbf{V}_{\text {DC }}$	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at $\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$	$\mathbf{I}_{(\mathrm{AV})}$	50.0							Amp
Peak Forward Surge Current, 8.3ms single half-sine-wave superimposed on rated load (JEDEC method)	$\mathbf{I F S M}^{\text {F }}$	400							Amp
Maximum Forward Voltage at 25.0A DC and $25^{\circ} \mathrm{C}$	V_{F}	1.1							Volts
Maximum Reverse Current at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at Rated DC Blocking Voltage $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	I_{R}	$\begin{aligned} & 10.0 \\ & 1000 \end{aligned}$							uAmp
Typical Junction Capacitance (Note 1)	C_{J}	300							pF
Typical Thermal Resistance (Note 2)	$\mathrm{R}_{\text {өJC }}$	2.6							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	T_{J}, Tstg	-55 to +150							${ }^{\circ} \mathrm{C}$

NOTES:

1- Measured at $1 \mathrm{MH}_{\mathrm{Z}}$ and applied reverse voltage of 4.0 VDC .
2- Thermal resistance from junction to case per leg

