SL12 THRU SL14

SURFACE MOUNT LOW VF SCHOTTKY BARRIER RECTIFIER

REVERSE VOLTAGE: FORWARD CURRENT:

20 to 40 VOLTS 1.0 AMPERE

http://www.njzrg.com

ELECTRONICS

GROWCHI

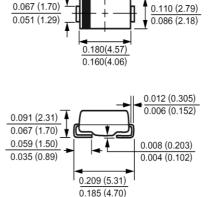
FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- · For surface mounted applications
- \cdot High current capability, low V_F
- · Built-in strain relief
- · Low profile package
- \cdot Metal to silicon rectifier. majority carrier conduction
- · High surge capacity
- · Low power loss, high efficiency
- For use in low voltage high frequency inverters, free wheeling, and polarity protection applications
- · High temperature soldering : 260°C /10 seconds at terminals

MECHANICAL DATA

Case: Molded plastic, DO-214AC(SMA) Terminals: Axial leads, solderable per MIL-STD-750, method 2026 guaranteed Polarity: Color band denotes cathode end Packaging: 12mm tape per EIA STD RS-481 Weight: 0.002 ounce, 0.064 gram

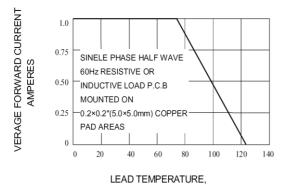
Maximum Ratings and Electrical Characteristics


Ratings at 25 ambient temperature unless otherwise specified. Single phase, half wave, $60H_Z$, resistive or inductive load. For capacitive load, derate current by 20%.

	Symbols	<i>SL12</i>	<i>SL13</i>	SL14	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	20	30	40	Volts
Maximum RMS Voltage	V _{RMS}	14	21	28	Volts
Maximum DC Blocking Voltage	V _{DC}	20	30	40	Volts
Maximum Average Forward Rectified Current at T _L (See Fig. 1)	I _(AV)	1.0			Amp
Peak Forward Surge Current,					
8.3ms single half-sine-wave	I _{FSM}	30			Amp
superimposed on rated load (JEDEC method)					
Maximum Forward Voltage at 1.0A (Note 1)	V _F	0.38	0.38	0.40	Volts
Maximum Reverse Current at T _A =25	Т	0.5			mAmp
at Rated DC Blocking Voltage T _A =100	I _R	20			
Typical Thermal Resistance (Note 2)	$R_{\theta JA}$	88			/W
	$\mathbf{R}_{\theta JL}$	28			
Operating Junction Temperature Range	T _J	-50 to +125			
Storage Temperature Range	Tstg		-50 to +150		

NOTES:

1- Pulse test: 300µs pulse width, 1% duty cycle


2- P.C.B. mounted with 0.2 x 0.2" (5.0 x 5.0mm) Copper Pad Areas

Dimensions in inches and (millimeters)

DO-214AC(SMA)

RATINGS AND CHARACTERISTIC CURVES

Fig. 1-FORWARD CURRENT DERATING CURVEE

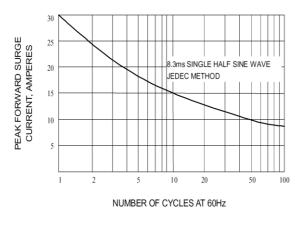


Fig. 3-MAXIMUM NON-REPETITIVE SURGE CURRENT

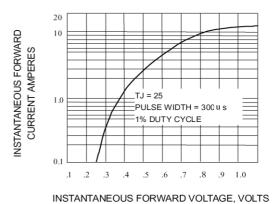
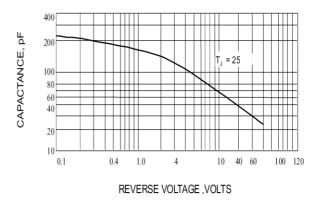



Fig. 2-TYPICAL INSTANTANEOUS FORWARD

CHARACTERISTICS

Fig. 4-TYPICAL JUNCTION CAPACITANCE

http://www.njzrg.com